SL Paper 2

Let u = 6i + 3j + 6k and v = 2i + 2j + k.

a. Find

- (i) $u \bullet v$;
- (ii) |u|;
- (iii) |v|.
- b. Find the angle between u and v.

[2]

[5]

Two lines with equations
$$\mathbf{r}_1 = \begin{pmatrix} 2\\ 3\\ -1 \end{pmatrix} + s \begin{pmatrix} 5\\ -3\\ 2 \end{pmatrix}$$
 and $\mathbf{r}_2 = \begin{pmatrix} 9\\ 2\\ 2 \end{pmatrix} + t \begin{pmatrix} -3\\ 5\\ -1 \end{pmatrix}$ intersect at the point P. Find the coordinates of P.

Let
$$\boldsymbol{v} = \begin{pmatrix} 2 \\ -3 \\ 6 \end{pmatrix}$$
 and $\boldsymbol{w} = \begin{pmatrix} k \\ -2 \\ 4 \end{pmatrix}$, for $k > 0$. The angle between \boldsymbol{v} and \boldsymbol{w} is $\frac{\pi}{3}$.

Find the value of \boldsymbol{k} .

Let
$$\overrightarrow{AB} = \begin{pmatrix} 4\\1\\2 \end{pmatrix}$$
.
a. Find $\left|\overrightarrow{AB}\right|$.
b. Let $\overrightarrow{AC} = \begin{pmatrix} 3\\0\\0 \end{pmatrix}$. Find \overrightarrow{BAC} .

In this question, distance is in metres.

Toy airplanes fly in a straight line at a constant speed. Airplane 1 passes through a point A.

[2]

[4]

Its position, p seconds after it has passed through A, is given by
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix} + p \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$$
.

a(i) (and (i) Write down the coordinates of A.

(ii) Find the speed of the airplane in ms^{-1} .

b(i) Antite figeven seconds the airplane passes through a point B.

- (i) Find the coordinates of B.
- (ii) Find the distance the airplane has travelled during the seven seconds.
- c. Airplane 2 passes through a point C. Its position q seconds after it passes through C is given by $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \\ 8 \end{pmatrix} + q \begin{pmatrix} -1 \\ 2 \\ a \end{pmatrix}, a \in \mathbb{R}$. [7]

The angle between the flight paths of Airplane 1 and Airplane 2 is 40° . Find the two values of *a*.

Consider the points P(2, -1, 5) and Q(3, -3, 8). Let L_1 be the line through P and Q.

a. Show that
$$\overrightarrow{PQ} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$
. [1]
b. The line L_1 may be represented by $r = \begin{pmatrix} 3 \\ -3 \\ 8 \end{pmatrix} + s \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$. [3]
(i) What information does the vector $\begin{pmatrix} 3 \\ -3 \\ 8 \end{pmatrix}$ give about L_1 ?
(ii) Write down another vector representation for L_1 using $\begin{pmatrix} 3 \\ -3 \\ 8 \end{pmatrix}$.
c. The point $T(-1, 5, p)$ lies on L_1 . [3]
Find the value of p .
d. The point T also lies on L_2 with equation $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3 \\ 9 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \\ q \end{pmatrix}$. [3]
Show that $q = -3$.

e. Let θ be the **obtuse** angle between L_1 and L_2 . Calculate the size of θ .

Consider the points A~(1,~5,~-7) and B~(-9,~9,~-6).

Let C be a point such that
$$\overrightarrow{AC} = \begin{pmatrix} 6 \\ -4 \\ 0 \end{pmatrix}$$
.

[4]

[5]

[7]

The line L passes through B and is parallel to (AC).

a. Find
$$\overrightarrow{AB}$$
.[2]b. Find the coordinates of C.[2]c. Write down a vector equation for L.[2]d. Given that $|\overrightarrow{AB}| = k |\overrightarrow{AC}|$, find k.[3]e. The point D lies on L such that $|\overrightarrow{AB}| = |\overrightarrow{BD}|$. Find the possible coordinates of D.[6]

The point O has coordinates (0, 0, 0), point A has coordinates (1, -2, 3) and point B has coordinates (-3, 4, 2).

a(i) and (ii),
(i) Show that
$$\overrightarrow{AB} = \begin{pmatrix} -4\\ 6\\ -1 \end{pmatrix}$$
. [8]
(ii) Find \overrightarrow{BAO} .
b. The line L_1 has equation $\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} -3\\ 4\\ 2 \end{pmatrix} + s \begin{pmatrix} -4\\ 6\\ -1 \end{pmatrix}$.
Write down the coordinates of two points on L_1 .
(i) Find a vector equation for L_2 , giving your answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$.
(ii) Find a vector equation for L_2 , giving your answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$.
(ii) Point $C(k, -k, 5)$ is on L_2 . Find the coordinates of C.
d. The line L_3 has equation $\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 3\\ -8\\ 0 \end{pmatrix} + p \begin{pmatrix} 1\\ -2\\ -1 \end{pmatrix}$ and passes through the point C.
Find the value of p at C.

[6]

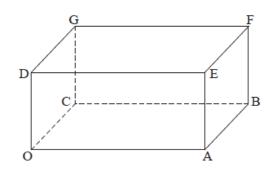
[5]

[6]

Consider the lines L_1 and L_2 with equations $L_1: \mathbf{r} = \begin{pmatrix} 11\\8\\2 \end{pmatrix} + s \begin{pmatrix} 4\\3\\-1 \end{pmatrix}$ and $L_2: \mathbf{r} = \begin{pmatrix} 1\\1\\-7 \end{pmatrix} + t \begin{pmatrix} 2\\1\\11 \end{pmatrix}$. The lines intersect at point P.

- a. Find the coordinates of P.
- b. Show that the lines are perpendicular.
- c. The point Q(7, 5, 3) lies on L_1 . The point R is the reflection of Q in the line L_2 . Find the coordinates of R.

The following diagram shows the cuboid (rectangular solid) OABCDEFG, where O is the origin, and $\overrightarrow{OA} = 4i$, $\overrightarrow{OC} = 3j$, $\overrightarrow{OD} = 2k$.



a(i),(i) and $i(i),\overline{OB}$.

- (ii) Find \overrightarrow{OF} .
- (iii) Show that $\overrightarrow{AG} = -4i + 3j + 2k$.

b(i) Whote bid own a vector equation for

- (i) the line OF;
- (ii) the line AG.
- c. Find the obtuse angle between the lines OF and AG.

Consider the points A(5, 2, 1) , B(6, 5, 3) , and C(7, 6, a + 1) , $a \in \mathbb{R}$.

Let q be the angle between \overrightarrow{AB} and \overrightarrow{AC} .

(i)
$$\overrightarrow{AB}$$
;
(ii) \overrightarrow{AC} .

b. Find the value of *a* for which $q = \frac{\pi}{2}$.

c. i. Show that
$$\cos q = \frac{2a + 14}{\sqrt{14a^2 + 280}}$$
.

ii. Hence, find the value of a for which $\mathbf{q}=1.2$.

c.ii.Hence, find the value of a for which $\mathbf{q}=1.2$.

Let v = 3i + 4j + k and w = i + 2j - 3k. The vector v + pw is perpendicular to w. Find the value of p.

[4]

[5]

[7]

[3]

[4]

[8]

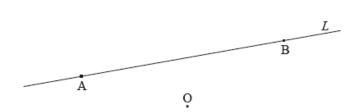
[4]

The points A and B lie on a line L, and have position vectors $\begin{pmatrix} -3 \\ -2 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 6 \\ 4 \\ -1 \end{pmatrix}$ respectively. Let O be the origin. This is shown on the following

diagram not to scale

diagram not to scale

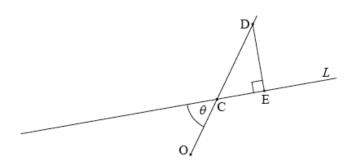
diagram.



The point C also lies on L, such that $\overrightarrow{\mathrm{AC}} = 2\overrightarrow{\mathrm{CB}}$.

Let θ be the angle between \overrightarrow{AB} and \overrightarrow{OC} .

Let D be a point such that $\overrightarrow{\mathrm{OD}} = \overrightarrow{k\mathrm{OC}}$, where k > 1. Let E be a point on L such that $\widehat{\mathrm{CED}}$ is a right angle. This is shown on the following diagram.



a. Find \overrightarrow{AB} .

b. Show that
$$\overrightarrow{\mathrm{OC}} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$$
.

c. Find θ .

d. (i) Show that
$$\left| \overrightarrow{\text{DE}} \right| = (k-1) \left| \overrightarrow{\text{OC}} \right| \sin \theta$$
. [6]

The distance from D to line L is less than 3 units. Find the possible values of k. (ii)

Line L_1 passes through points A(1, -1, 4) and B(2, -2, 5) .

Line L_2 has equation $\boldsymbol{r} = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$.

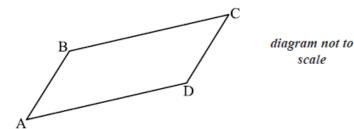
a. Find AB.

[2]

[5]

- b. Find an equation for L_1 in the form $\boldsymbol{r} = \boldsymbol{a} + t\boldsymbol{b}$.
- c. Find the angle between L_1 and L_2 .
- d. The lines L_1 and L_2 intersect at point C. Find the coordinates of C.

The diagram shows a parallelogram ABCD.



The coordinates of A, B and D are A(1, 2, 3), B(6, 4, 4) and D(2, 5, 5).

a(i), (ii) and (iii). (i) Show that $\overrightarrow{AB} = \begin{pmatrix} 5\\2\\1 \end{pmatrix}$. (ii) Find \overrightarrow{AD} . (iii) Hence show that $\overrightarrow{AC} = \begin{pmatrix} 6\\5\\3 \end{pmatrix}$. b. Find the coordinates of point C. c(i) (and (i) ind $\overrightarrow{AB} \bullet \overrightarrow{AD}$. (ii) Hence find angle A.

d. Hence, or otherwise, find the area of the parallelogram.

The following diagram shows two perpendicular vectors \boldsymbol{u} and \boldsymbol{v} .

[2]

[7]

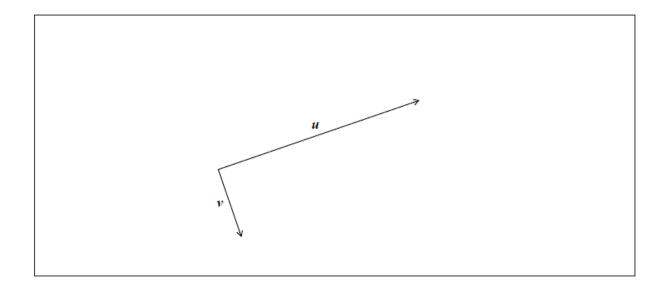
[6]

[5]

[3]

[7]

[3]



a. Let w = u - v. Represent w on the diagram above.

b. Given that
$$u = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$
 and $v = \begin{pmatrix} 5 \\ n \\ 3 \end{pmatrix}$, where $n \in \mathbb{Z}$, find \(n\).

Consider the lines L_1 , L_2 , L_2 , and L_4 , with respective equations.

$$L_{1}: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$$
$$L_{2}: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + p \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$
$$L_{3}: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 2 \\ -a \end{pmatrix}$$
$$L_{4}: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = q \begin{pmatrix} -6 \\ 4 \\ -2 \end{pmatrix}$$

a. Write down the line that is parallel to L_4 .	[1]
b. Write down the position vector of the point of intersection of L_1 and L_2 .	[1]
c. Given that L_1 is perpendicular to L_3 , find the value of a .	[5]

[4]

Let $\vec{PR} = 6\mathbf{i} - \mathbf{j} + 3\mathbf{k}$.

a.i. Find \vec{PQ} .	[2]
a.ii.Find $\left \vec{PQ} \right $.	[2]
b. Find the angle between PQ and PR.	[4]
c. Find the area of triangle PQR.	[2]

[3]

d. Hence or otherwise find the shortest distance from R to the line through P and Q.

The line
$$L_l$$
 is represented by $\boldsymbol{r}_1 = \begin{pmatrix} 2\\5\\3 \end{pmatrix} + s \begin{pmatrix} 1\\2\\3 \end{pmatrix}$ and the line L_2 by $\boldsymbol{r}_2 = \begin{pmatrix} 3\\-3\\8 \end{pmatrix} + t \begin{pmatrix} -1\\3\\-4 \end{pmatrix}$.

The lines L_1 and L_2 intersect at point T. Find the coordinates of T.

Line
$$L_1$$
 has equation $\boldsymbol{r}_1 = \begin{pmatrix} 10 \\ 6 \\ -1 \end{pmatrix} + s \begin{pmatrix} 2 \\ -5 \\ -2 \end{pmatrix}$ and line L_2 has equation $\boldsymbol{r}_2 = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} + t \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$.

Lines L_1 and L_2 intersect at point A. Find the coordinates of A.